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Alkrlucrz The palladium(O) catalysed coupling of eikynyl porphyrins with eitha,aryl iodidea or a @- 
bmmoviny@nphyrin l&s to symmc~rical and unsymmcuical bii@nphyrins) incaporatlng various unsatmated 
bridges. Some novel porphyrins bearing enyne and alkyne substituents anz also described. 

‘Ihe preparation of arrays of covalently linked porphyrins is a popular area of research, not only for 

its possible application to the elucidation of natural photosynthetic mechanisms, but also for probing the 

fundamental physico-chemical proper&s of the porphyrin chromophore. The elegant studies directed to 

the former topic were recently reviewed. 1 Pandey et al.2 recently described a novel and versatile 

approach to the preparation of unsymmetrical porphyrin dimers, in particular those linked by p-phenylene 

and p,p’-stilbenylene bridges. Other unsymmetrical hydrocarbon linked dimers are known.3e4 We am 

concentrating on the properties of alkynyl-substituted porphyrins, and have found that the butadiyne 1 

and complexes of the same ligand with other metals show strong inter-porphyrin interaction in their 

electronic absorption spectra.5’7 The effects of meso-alkynyl substltuents on porphyrin spectra have also 

been noted by Anderson.8 Since the palladium catalysed coupling of termlnal alkynes with alkenyl and 

aryl halides is a well tested and efficient processg, we sought to apply this chemistry to the synthesii of 

varlous dimeric porphyrins contalnlng meso-alkynyl groups. We report herein our initial results, which 

show that this idea is indeed a fruitful one, enabling the preparation of symmetrical and unsymmctricai 

dimers contalning various unsaturated bridges. Others t&l1 have reported porphyrin dlmers or uimers 

lncoqnatlng alkyne brldges,,but these examples contain nteso-aryl groups between the porphyrin and the 

trlple bonds. 

The coupling of a 50% excess of meso-(ethynyl)NiOEP (H2OEP = octaethylporphyrln) 5th with 

l&dllobenxene ln the pmsence of WC12 and triphenylphosphine in triethylamine as solvent, led to the 

isolation of the p,p’-diethynylphenylene bridged dimer 2. 12 The reaction was monitored by tic, a 

challenging task, as the dimers 1 and 2, the intermediate meso-[@-iodophenyl)ethynyl] species, and the 

alkyne starting material all display similar elution behaviour. The pure dimer 2 was obtained in 60% 

yield after passage through two silicagel columns. Its electronic absorption spectrum, perhaps 

surprisingly, appears to indicate that there is less conjugative interaction between the chromophores in 2, 

than exists in 1. Steric interactions involving the neighbouring ethyl substituents may be the cause of 



this. The Soret band of 2 is split, but not to the same extent exhibited by 1, and the longest wavelength 

band is ted-shifted relative to the monomeric meso-ethynyl compound by only 4 nm. 
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The corresponding coupling reaction using 1,2-diiodobenzene, to form the dimer 3, was more 

complicated, for two msons. Firstly, steric constraints led to a more sluggish second coupling reaction. 

This enabled the isolation and characterisation of the mono-coupled meso-[(o-iodophenyl)ethynyl] 

derivative, a compound with potential uses in the synthesis of further novel structures. Secondly. 

although the desired product 3 appeared to be formed in moderate yield, chromatographic purification 

proved to be difficult. The compound decomposes to form more polar products, the structures of which 

are under investigation. Rearrangements of o-diethynylbenzenes and cis-enediynes are known.13 

We have also achieved the formation of unsymmetrical porphyrin dimers by palladium catalysed 

coupling, using an alkynylporphyrin6 and meso-@bromovinyl)NiOEP.5~6 Thus the dimcrs 4a - 4c were 

prepared. The first of these butenynes has not yet been separated from the by-product 1, but has been 

characteriscd by its unmistakeable tH and 13C NMR spectra. The dimers 4b and 4c were obtained in 

30% and 15% yields, respectively, after preparative tic and recrystallization. These are the first examples 

of porphyrin dimers containing the butenyne linkage. As expected, the out-of-plane truns-alkene 

interrupts the conjugation, and the electronic spectra are simply the superimposition of the two 

chromophores. We have also prepared the protected enyne monomers 4d and 4e in high yields, since the 

readily available alkynes can be used in large excess. These last two compounds should be useful in the 

synthesis of dimers with longer bridges. Finally, we have illustrated coupling in the reverse sense, i.e, an 

alkyne with an iodoporphyrin, by preparing in good yield, the zinc complex of 2,4-bis(trimethyl- 

silylethynyl)deuteroporphytin IX dimethyl ester from the corresponding diiodoporphyrin complex, the 

free base of which was independently prepared by Bonnett et al.14 and Minnetian et u1.15a The Smith 
group used palladium catalysed coupling of mercurio- and haloporphyrins to form allcenyl and styryl 

substituted deutcroporphyrins, but were unable to introduce alkynes by their method.15 
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All compounds except 3 and 4a have been character&d by tic. and *H and t3C NMR. IR. 

electronic absorption and FAB mass spectra. The yields of the dimers have not yet been optimized. This 

methodology should be extendable to many other alkenyl, aryl and heteroaryl halides, and we are 

currently pursuing such studies. 
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